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INTRODUCTION

Reactive oxygen species have been increasingly implicated
as playing a central role in the pathophysiology of clinical
infections. More specifically, superoxide, hydrogen peroxide,
hydroxyl radical, hypohalous acid, and recently, nitric oxide are
thought to contribute to these processes. These compounds
exhibit a broad spectrum of biotoxicity and are crucial to host
defense for the optimal microbicidal activity of neutrophils and
other phagocytes (148, 209, 216, 313). In response, microor-
ganisms have developed complex strategies not only to avoid
contact with phagocyte-derived oxidants but also to defend
themselves from injury once oxidants are encountered. Host
cells have developed similar adaptations to protect themselves
against a deleterious consequence of oxidant exposure, inflam-
matory tissue injury (209, 313). This review will discuss the
formation of oxidants in vivo and their central role in the
complex interplay between microbial invasion and host de-
fense.

GENERATION AND TOXICITY OF SELECTED
OXIDANTS IN BIOLOGIC SYSTEMS

Many biochemical reactions vital to normal aerobic metab-
olism of human and microbial cells require the transfer of four
electrons to molecular oxygen to form H2O. Under most cir-
cumstances, this transfer occurs simultaneously without the
formation of other intermediates. However, molecular oxygen
does have the capacity to undergo sequential univalent reduc-

tion to form other oxygen intermediates with different toxici-
ties prior to the generation of H2O.
The addition of one electron to O2 yields the superoxide

radical (zO2
2), which at physiologic pH rapidly reduces itself

(dismutes, k ' 2 3 105 M21 s21) to form the divalent oxygen
reduction product, hydrogen peroxide (H2O2). Trivalent oxy-
gen reduction in vitro occurs via the reaction of H2O2 with
zO2

2 to produce the hydroxyl radical (zOH). However, at phys-
iologic pH, this reaction is of little biologic importance unless
a transition metal catalyst (e.g., Fe31) is present to enhance the
reaction rate, yielding zOH via the Haber-Weiss reaction (123)
(Table 1). As discussed below, not all iron complexes can serve
as a catalyst in this reaction (125). Besides zOH formation,
experimentally induced interactions between H2O2 and iron
chelates may also lead to the production of the reactive iron
peroxocomplex and ferryl ion (268, 321). However, their role in
human and microbial physiology is largely unknown.
Although most investigations have focused on zOH forma-

tion via the Haber-Weiss mechanism, evidence also exists for
the formation of zOH from zO2

2-mediated reduction of hypo-
chlorous acid (HOCl) (51, 189, 232, 250). A potent oxidant in
itself, HOCl is generated by the interaction of H2O2 with
phagocyte-derived peroxidases (148).
Recently, intense investigation has been directed at another

oxidant species, nitric oxide (NOz). NOz is not a classic product
of O2 reduction; instead, its formation in mammalian cells is
dependent on a group of enzymes termed nitric oxide syn-
thases (NOS) (216, 224). These enzymes oxidize L-arginine to
L-citrulline and NOz. Although several related NOS isoforms
have been isolated, they are divided into two categories, con-
stitutive and inducible, based on differences in regulation and
activities. Constitutive isoforms (cNOS) are found in neuronal
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and endothelial cells. cNOS activity responds to changes in
intracellular calcium concentration via calcium-calmodulin
binding. This results in the intermittent production of small
amounts of NOz necessary for physiologic processes such as
neurotransmission and blood pressure regulation. By using
spin-trapping techniques, brain NOS has also been demon-
strated to generate zO2

2 in a calcium-calmodulin-dependent
manner (243). The inducible NOS isoform (iNOS) is expressed
in many cell types, including hepatocytes, respiratory epithe-
lium, and macrophages. Its activity is independent of fluctua-
tions in the intracellular calcium concentration. Factors known
to modulate iNOS levels include a number of cytokines, mi-
croorganisms, and microbial products, consistent with the im-
portance of iNOS activity in host defense and inflammation.
Many bacterial species are also capable of generating NOz

under conditions of low oxygen tension via nitrite reductases
(334). Once formed, NOz has the ability to act as an oxidizing
agent alone or interact with zO2

2 to generate peroxynitrite
(ONOO2) (k ' 6.7 3 109 M21 s21) (245, 247, 284) and
ultimately zOH via peroxynitrate formation and decomposition
(Table 1) (19). Although a transition metal catalyst is not
required in this system, thermodynamic and kinetic consider-
ations may not favor the formation of zOH via this reaction in
vivo (170).

Superoxide and Hydrogen Peroxide

Superoxide is a moderately reactive compound capable of
acting as an oxidant or reductant in biologic systems. This
relative inactivity allows zO2

2 to diffuse for considerable dis-
tances before it exerts its toxic effects. Extracellularly gener-
ated zO2

2 can gain access to intracellular targets via cellular
anion channels (264). These targets include bacterial enzymes,
particularly those involved in biosynthesis of branched amino
acids (e.g., a,b-dihydroxyisovalerate dehydratase and NADH-
bound lactic dehydrogenase) (122, 174). Several Escherichia
coli (and mammalian) dehydratases containing [4Fe-4S] clus-
ters are particularly susceptible to inactivation by zO2

2, includ-
ing aconitase, 6-phosphogluconate dehydratase, a,b-dihy-
droxyacid dehydratase, and fumarases A and B (101, 108, 109,
111, 183). Aconitase has also been shown to be inactivated by

ONOO2 but not NOz (57, 139). These enzymes are unique in
that they can subsequently undergo reactivation by an iron-
dependent mechanism (110). It is postulated that the inactiva-
tion occurs at an early stage of oxidative stress, such that
aconitases function as “circuit breakers,” halting the produc-
tion of toxic zO2

2 by temporarily shutting down cellular oxida-
tive metabolism (109). Once the stress has passed, the dehy-
dratases can be reactivated by intracellular iron and thiols
rather than having to be synthesized de novo (109).
In environments of low pH, such as at sites of inflammation

or inside the phagosome, zO2
2 becomes protonated to form

HO2
z. Because of its neutral charge, HO2

z is more membrane
permeable and more likely to react with itself to form H2O2.
Additional toxicity of zO2

2 in biologic systems is likely to occur
via its participation in the Haber-Weiss reaction in the pres-
ence of catalytically active iron (123).
Hydrogen peroxide is a more reactive oxidant than zO2

2, and
readily diffuses across cell membranes. Potential sources of
H2O2-mediated damage of cellular constituents include the
oxidation of cellular membranes and enzymes, DNA damage
and mutagenesis, and the inhibition of membrane transport
processes (313). Imlay and Linn have described in greater
detail the mechanisms of H2O2-mediated damage. They dem-
onstrated that killing of E. coli by H2O2 is bimodal in that low
(1 to 3 mM) and high (.20 mM) concentrations of H2O2 are
more lethal than intermediate concentrations (153). Mode 1
(low H2O2 concentration) killing has been attributed to DNA
damage mediated by the interaction of H2O2 with Fe

21 to
form the toxic ferryl radical (149), an intermediate product in
the formation of zOH. Exposure of E. coli to these low con-
centrations of H2O2 induces a protective response which con-
fers increased resistance to subsequent H2O2 exposures by an
enhanced ability to carry out recombinational DNA repair
(154). Mode 2 killing, which does not require iron or an elec-
tron source to occur, is not due to DNA damage but may
involve the oxidation of a separate cellular target (137). Recent
data by Pacelli et al. demonstrate that NOz potentiates H2O2-
induced killing of E. coli (235). This suggests that macrophage-
derived NOz, in addition to its own cytotoxic effects, may in-
teract with H2O2 to enhance microbicidal activity at sites of
infection (235).

Hydroxyl Radical

In many cases where zO2
2 and/or H2O2 is implicated in cell

injury, it is unclear whether the process is mediated by these
compounds or whether they simply serve as precursors for
another, more potent oxidant species (e.g., zOH), which is truly
mediating the injury. Studies using more sensitive free radical
detection systems implicate zOH in the oxidation of a large
number of biomolecules including proteins, DNA, and lipids,
as a result of their initial exposure to zO2

2 and/or H2O2. Owing
to its high reactivity, zOH is diffusion limited such that once
formed in a biologic system, it is likely to travel only very short
distances before it encounters an oxidizable substrate. This
property dictates that zOH must be generated in close proxim-
ity to a critical cellular target molecule in order for it to me-
diate injury directly (77).
A mechanism by which zOH and other oxidants may cause

cell injury at sites distant from their formation is via the initi-
ation of a free radical cascade (43, 313). Oxidation of unsat-
urated fatty acids within a lipid membrane can produce peroxyl
radical, which in turn can react with other nearby lipid mole-
cules to generate additional lipid radicals. These new lipid
radicals can then react with other unsaturated lipids, thereby
setting up a free radical chain reaction (43). This reaction

TABLE 1. Chemical reactions involving reactive oxygen species

Reaction Formulaa

Haber-Weiss reaction ..............zO2
2 1 Fe31 3 O2 1 Fe21

H2O2 1 Fe21 3 zOH 1 OH2 1 Fe31
zO2

2 1 H2O2 3
zOH 1 OH2 1 O2

Myelo (eosinophil)
peroxidase .............................H2O2 1 HX 3 HOX 1 H2O

Nitric oxide synthase................L-Arginine 3 L-citrulline 1 NOz

Peroxynitrite formation/
decomposition.......................NOz 1 zO2

2 3 ONOO2

ONOO2 1 H1 3 ONOOH
ONOOH 3 zOH 1 NOz

GSH
Peroxidase .............................2 GSH 1 H2O2 3 G-S-S-G 1 2H2O
Reductase ..............................G-S-S-G 1 2NADPH 3 2GSH 1 2NADP

Catalase .....................................2H2O2 3 2H2O 1 O2

SOD ...........................................2zO2
2 1 2H1 3 H2O2 1 O2

a X, halide.
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eventually results in the oxidation of biomolecules at sites
considerably distant from where the initial free radical reaction
occurred (43).

Sources of Iron Available for Hydroxyl Radical
Generation In Vivo

Since zOH formation from zO2
2 and H2O2 under physiologic

conditions requires the presence of a transition metal catalyst,
there has been considerable interest in determining which iron
chelates potentially present in vivo could serve as zOH cata-
lysts. In humans, intracellular iron is predominantly complexed
to ferritin in a relatively noncatalytic form (301). Likewise,
almost all extracellular iron is tightly bound to host binding
proteins (transferrin and lactoferrin) in forms unable to cata-
lyze zOH formation (7, 9, 42, 45, 320). In fact, there are strong
data suggesting that lactoferrin serves as an antioxidant (34, 39,
40, 71, 215). Neutrophil lactoferrin may function to trap iron
from ingested microorganisms (215). In phagocytes that do not
contain lactoferrin (i.e., monocytes and macrophages), a spe-
cific surface receptor binds exogenous lactoferrin (20, 24, 50,
213, 326). Monocytes/macrophages previously incubated with
lactoferrin are less susceptible to iron-dependent peroxidation
of their membranes (40). Thus, via its interaction with phago-
cytes, lactoferrin may prevent iron-catalyzed oxidant forma-
tion, thereby limiting inflammatory tissue injury. This would
complement the ability of the protein to limit the availability of
iron for microbial growth (88, 99). Lactoferrin also binds lipo-
polysaccharide, an important compound mediating toxicity in
sepsis. Although this interaction has no effect on the ability of
lactoferrin to inhibit the Haber-Weiss reaction, it does disrupt
lipopolysaccharide priming of phagocytes for zO2

2 production
(71).
In contrast, in vitro data suggest that modification of some

host iron-chelating proteins by proteases or zO2
2 can result in

the generation of products capable of catalyzing zOH forma-
tion (23, 33). The Pseudomonas aeruginosa secretory product
Pseudomonas elastase and other host-derived proteases
present at sites of inflammation are known to cleave trans-
ferrin and lactoferrin into lower-molecular-weight iron che-
lates (27, 32, 84, 90, 91, 254). Pseudomonas elastase-cleaved
transferrin and, to a lesser extent, lactoferrin are capable of
catalyzing zOH formation when a source of zO2

2 and H2O2 is
concurrently present (33, 208, 211). Additional studies have
demonstrated the ability of Pseudomonas elastase and other
protease-cleaved transferrin to enhance oxidant-mediated por-
cine pulmonary artery endothelial cell injury via zOH genera-
tion in an in vitro model (208). Evidence supporting the po-
tential clinical relevance of these findings has been obtained by
the detection of transferrin cleavage products in bronchoalveo-
lar lavage specimens from P. aeruginosa-infected cystic fibrosis
patients but not in those from normal individuals (35).
As microorganisms require iron for growth and replication,

their mechanisms of iron acquisition and storage have evolved
to fulfill these needs. Intracellular bacterial iron is primarily
complexed to ferritin-like iron storage proteins (229, 290). To
acquire iron from the extracellular environment, aerobic and
facultative anaerobic bacteria, as well as fungi, synthesize di-
verse low-molecular-weight Fe(III)-scavenging ligands collec-
tively termed siderophores (229). These compounds possess a
high affinity for iron, which is probably important at sites of
infection (e.g., the airway), where the availability of iron for
bacteria is extremely limited due to competition from host
iron-binding proteins. As an example, to be able to compete
for iron effectively, P. aeruginosa synthesizes and secretes two
types of siderophores: pyochelin and pyoverdin (74, 75). Stud-

ies from our laboratory suggest that pyochelin may play an
important role not only in iron acquisition but also in P. aerugi-
nosa-associated inflammatory tissue injury (38). The environ-
ment at sites of P. aeruginosa infections is replete with zO2

2

and H2O2 generated by local phagocytes and via the redox
action of pyocyanin on target cells (discussed below). Fer-
ripyochelin can act as a catalytically active iron chelate in the
formation of zOH (37) and can enhance oxidant-mediated in
vitro porcine pulmonary artery endothelial (38) and epithelial
(36) cell injury. Therefore, although the production of sid-
erophores by P. aeruginosa is an adaptive mechanism for ob-
taining necessary iron under stressful conditions, the same
compounds may also potentiate oxidant-mediated tissue injury
via the catalysis of zOH. A similar role for pyoverdin has not
been found (69). Nevertheless, it is possible that siderophores
produced by other organisms play a similar role, but there are
currently no available data to substantiate this.
Additional potential sources of catalytically active iron re-

lated to host-microbe interactions in vivo include iron released
from hemoglobin through the action of the bacterial toxin
hemolysin, host cell exposure to bacterially derived iron reduc-
tion compounds such as pyocyanin (discussed in a later sec-
tion), and/or the release of intracellular iron from damaged
mammalian or bacterial cells into the microenvironment. Re-
gardless of their source, it is necessary that extracellularly
generated iron catalysts remain in close proximity to the cell in
order to facilitate zOH-mediated injury, given the limited dif-
fusibility of zOH (116).

Myeloperoxidase-Derived Oxidants
Coincident with their production of zO2

2 and H2O2, stimu-
lated human phagocytes release one of two distinct peroxidases
from their cytoplasmic granules. In the case of neutrophils and
monocytes, this enzyme is myeloperoxidase (MPO), whereas
for eosinophils it is eosinophil peroxidase (EPO) (148). The
interaction of MPO and EPO with H2O2 forms hypohalous
acids (HOX, where X 5 halide). It is generally thought that
macrophages lack either enzyme (169); however, recent data
suggest that this may not be universally true (79). Myeloper-
oxidase is a glycoprotein (molecular weight, 150) consisting of
a pair of glycosylated heavy (a)-light (b) protomers, each of
which contains an iron atom (225). EPO is an ab glycoprotein,
similar in structure to hemi-MPO (148). These enzymes are
cationic, thus allowing them to stick to cell surfaces and per-
haps enhancing their potential for cell injury by increasing the
local concentration of hypohalous acid at the target cell mem-
brane (184, 212, 251, 277, 325).
Hypohalous acids are potent oxidants known to have several

cytotoxic effects on mammalian and bacterial cells. Cell mem-
brane integrity may be violated by membrane peroxidation and
the oxidation and/or decarboxylation of membrane proteins (2,
322). Likewise, oxidation of components of the bacterial respi-
ratory chain and interference with bacterial DNA-membrane
interaction required for bacterial division can disrupt normal
cellular metabolism and replication (249, 265). Activated neu-
trophils and monocytes can also generate cytotoxic chlora-
mines, tyrosyl radical, and zOH via an MPO-dependent path-
way (140, 148, 314).

Nitric Oxide
Nitric oxide is cytostatic or cytotoxic for both prokaryotic

and eukaryotic cells (105, 216). The primary mechanism of
injury involves the interaction of NOz with iron-containing moi-
eties in key enzymes of the respiratory cycle (e.g., glyceralde-
hyde-3-phosphate dehydrogenase) and with DNA synthesis
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leading to mutagenesis in target cells (216). Nitric oxide also
can react with other biomolecules to form new compounds that
are also capable of toxicity. For example, the formation of
nitrosothiol groups on proteins can lead to the inactivation of
enzymes or changes in protein function (216, 261). These
groups can react further to cross-link sulfhydryl groups and
thus initiate a chain reaction (261). In addition, NOz and its
derivatives can form toxic alkylating agents by reacting with
secondary amines (156).
As shown in Table 1, ONOO2 is generated by the reaction

of zO2
2 with NOz (19). Its ability to directly oxidize sulfhydryl

groups and DNA bases, catalyze iron-independent membrane
lipid peroxidation, and react with metals or metalloproteins
(e.g., superoxide dismutase [SOD]) to form the toxic nitronium
ion (NO22) has led some investigators to suggest that ONOO2

plays a more important role than its precursor NOz in mediat-
ing cytotoxicity (19, 144, 155, 247, 248, 287). In addition, evi-
dence suggests that upon protonation, ONOO2 can undergo
homolytic cleavage to form zOH by an iron-independent mech-
anism (19); however, the biologic relevance of this reaction has
not been definitively addressed.

SOURCES OF OXIDANTS ENCOUNTERED BY
MICROBES IN VIVO

Endogenous Sources

Like eukaryotic cells, aerobic microorganisms are continu-
ally exposed to endogenous sources of toxic oxygen species as
a consequence of aerobic metabolism (12). As discussed above,
this occurs by sequential univalent electron reduction of mo-
lecular O2 to generate such species as

zO2
2, H2O2, and

zOH.
Under certain conditions, homolytic cleavage of H2O2 may
also yield zOH. These toxic oxygen species also can be gener-
ated as by-products of reactions involving glucose oxidase,
xanthine oxidase, and thiol groups and flavins (73, 112, 252,
253). Furthermore, microbial exposure to UV or g irradiation
induces zO2

2 production (200). Anaerobic organisms are par-
ticularly susceptible to oxidants derived via the above mecha-
nisms, as they often lack the antioxidant defense mechanisms
observed in aerobic organisms (discussed below).
A number of microorganisms, including Enterococcus faeca-

lis (308), E. coli (150), Lactobacillus spp. (316), Streptococcus
pneumoniae (316), and a number of Mycoplasma spp. (192,
204), also generate extracellular zO2

2 and H2O2. Additional
studies have shown that these oxidants can exert a number of
beneficial and toxic effects on both the host and other micro-
organisms. For example, H2O2-producing Lactobacillus spp.
inhibit Neisseria gonorrhoeae and human immunodeficiency vi-
rus (HIV) replication in vitro (167, 332), suggesting a nonspe-
cific antimicrobial defense mechanism resulting from the pres-
ence of lactobacilli in the normal vaginal flora. Likewise, in
women with bacterial vaginosis, H2O2-producing lactobacilli
are notably absent from the vaginal flora (89). In contrast, zO2

2

made byMycoplasma pneumoniae can inactivate host cell cata-
lase, resulting in progressive oxidative damage to infected cells
in vitro (3). S. pneumoniae-derived H2O2 may play a role in
host cellular injury in pneumococcal pneumonia, as it has been
shown to be toxic to rat alveolar epithelial cells in an in vitro
model (86). The formation of dental plaque and the subse-
quent development of gingivitis and periodontitis are also re-
lated to the balance of H2O2-producing and H2O2-degrading
organisms in the oral microenvironment (269).
Microorganisms are also continually exposed to endog-

enously produced NOz through denitrification (334). This pro-
cess is a distinctive mode of respiration that is essential to

many forms of bacteria and fungi; it involves the transforma-
tion of oxyanions of nitrogen to N2, mainly under conditions of
reduced oxygen tension or strict anaerobiosis. Denitrification is
controlled by a number of metalloenzymes, of which nitrite
reductase has been identified as the enzyme responsible for the
conversion of nitrite to NOz (334). Two mutually exclusive
nitrite reductases have been identified among denitrifying bac-
teria: a tetraheme cytochrome cd located in the periplasm of
gram-negative organisms, and a Cu-containing protein bound
to the cytoplasmic membrane of gram-positive organisms
(334). The locations of these enzymes may limit the potential
toxicity of the endogenously produced NOz, as NOz is subse-
quently rapidly reduced by a cytoplasmic membrane-associated
NOz reductase. Recent data also demonstrate the existence of
a NOS system in Nocardia spp. (64), the first confirmation of
such a system in microorganisms. The stoichiometry of prod-
ucts formed with respect to substrates used, cofactor require-
ments, and inhibition by NG-nitro-L-arginine were found to be
similar to those observed in mammalian NOS (64). There is
evidence that erythrocytes infected with Plasmodium falcipa-
rum may also generate NOz via NOS and produce a soluble
factor that is able to evoke NOz production in host tissues
(113). Reports of other microbial NOS are likely to appear in
the future.

Exogenous Sources

Phagocyte-derived oxidants and their role in host defense.
The primary source of exogenous oxidative stress for patho-
genic bacteria during the process of active infection is their
attack by host phagocytic cells. Phagocytes utilize the cytotoxic
effects of many of the oxidants outlined above as a component
of their host defense mechanism (Fig. 1). When a phagocyte
encounters a microorganism, the latter is surrounded by a
portion of the phagocyte membrane, which then invaginates,
forming a discrete phagosome (148). This process leads to
increased phagocyte oxygen consumption and initiates a com-
plex biochemical signaling system which activates a unique
membrane-associated NADPH-dependent oxidase complex
(67). This enzyme univalently reduces O2 to

zO2
2, which is then

secreted into the phagosome (67). There, zO2
2 dismutes to

H2O2. These toxic compounds may also leak extracellularly as
the phagosome is closing.
Following phagocytosis, microorganisms are subjected to

FIG. 1. Overview of intraphagosomal processes leading to oxidant-mediated
microbial killings. CA, chloramines. Note that nitric oxide production occurs
only in phagocytes with an inducible nitric oxide synthase. Reproduced from
reference 209 with permission of the publisher.
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further insult as phagocyte primary (or azurophilic) cytoplas-
mic granules fuse with the phagosome. In addition to MPO,
these granules contain mainly hydrolases (acid hydrolases, ly-
sozyme, neutral proteases, deoxyribonucleases, etc.), which are
probably responsible for the decomposition of killed organisms
(31). Secondary (or specific) cytoplasmic granules fuse with the
external plasma membrane before the primary granules do,
thereby secreting their contents (lactoferrin, lysozyme, and vi-
tamin B12-binding protein) extracellularly (283). The mem-
branes of these secondary granules also contain a number of
functionally significant proteins, including CD11b/CD18, the
formyl-methionyl-leucyl-phenylalanine receptor, and cyto-
chrome b558 (48). The fusion of these granules with the plasma
membrane serves to reinforce or sustain various cellular re-
sponses (29).
The importance of the NADPH-oxidase system for host

microbicidal activity is exemplified in individuals with chronic
granulomatous disease (CGD), a group of inherited disorders
which are each characterized by defects in the NADPH-oxi-
dase complex resulting in a lack of phagocyte zO2

2 production
(299). The NADPH-oxidase requires the assembly of its mem-
brane and cytosolic components for generation of the respira-
tory burst. Likewise, the genetic defects in this enzyme ob-
served among CGD patients are characterized by their
localization to the membrane or cytosol. Approximately 60%
of CGD patients have an X-linked defect in the membrane b
cytochrome component as a result of mutations in the
gp91phox (55%) or p22phox (5%) gene encoding the large and
small subunits, respectively (236, 267, 300). Patients with au-
tosomal defects most commonly lack the cytosolic component,
p47phox, and account for approximately 35% of cases (55, 68).
Less than 5% of CGD patients lack the p67phox cytosolic
component (68). Regardless of the location of the defect, the
clinical manifestations of the different genetic forms of CGD
are quite similar. These persons suffer from recurrent pyogenic
infections with organisms that are normally rapidly killed by
oxidants: Staphylococcus aureus, enteric gram-negative rods,
Aspergillus spp., and Candida spp. Infectious complications,
which can involve virtually any organ system, typically begin in
infancy and recur throughout childhood and adolescence.
Although associated with states of neutropenia, infections

with other pathogenic organisms such as P. aeruginosa are
infrequently encountered in CGD patients (299). In vitro data
have demonstrated the ability of neutrophils to destroy P.
aeruginosa (127, 145, 196, 221, 328). This process is markedly
enhanced in the presence of serum which opsonizes the organ-
ism with complement and immunoglobulin to promote more
efficient phagocytosis by the neutrophil (328). However, addi-
tional in vitro observations suggest that oxidants are not critical
for neutrophil-mediated killing of P. aeruginosa. Neutrophils
from CGD patients have the same capacity as normal neutro-
phils to kill P. aeruginosa (145). Without the presence of am-
bient O2, neutrophils are unable to generate

zO2
2 and H2O2.

However, their abilities to kill P. aeruginosa under aerobic and
anaerobic conditions appear to be similar (196). This is in
contrast to findings with S. aureus, in which neutrophils are
unable to kill the organism under anaerobic conditions in vitro
(197). It may be that zO2

2-independent mechanisms of neu-
trophil killing, such as those involving granule-derived proteins
and proteases, are more important in P. aeruginosa elimination
(311). However, these findings do not eliminate the possibility
that neutrophil-derived oxidants increase the effectiveness of
the O2-independent killing mechanisms.
Phagocyte-derived H2O2 may also be converted intra- or

extracellularly to HOCl and the longer-lived chloramines in
the presence of chloride and myeloperoxidase. In addition,

MPO can catalyze the reaction of zO2
2 and HOCl to form zOH

(232). All of these compounds are known to have a number of
cytotoxic effects in vitro (313). However, their overall signifi-
cance in in vivo microbicidal activity is unclear, as patients with
MPO deficiency demonstrate delayed killing of fungi and bac-
teria but are normally resistant to most infections (237). Of all
patients recognized with this disorder (a prevalence of approx-
imately 1 in 2,000 of the general population) (225), only a few
have had serious infections (58, 166). The majority of these
patients had visceral or disseminated candidiasis (58, 179).
Three of these patients had concomitant diabetes mellitus (58,
179), perhaps indicating that the clinical morbidity associated
with MPO deficiency requires an additional defect in host
defense.
Phagocytes may also participate in mode 1 and 2 bacterial

killing by generating H2O2 as described by Imlay et al. (149,
153). As discussed above, the interaction of exogenous H2O2 at
low concentrations with intracellular Fe21 in E. coli results in
DNA damage mediated by the ferryl radical. Bacterial expo-
sure to higher H2O2 concentrations resulted in killing by a
separate oxidative mechanism.
Perhaps a more physiologically significant mechanism in-

volved in phagocyte-mediated oxidant generation and micro-
bial toxicity involves the iron-catalyzed intra- or extracellular
reaction of zO2

2 and H2O2 to form
zOH. Although there is a

limited amount of free iron available for this reaction to take
place in vivo, multiple potential host and microbial catalytic
iron complexes exist, as discussed previously. In vitro studies
have demonstrated that increased bacterial iron concentra-
tions enhance zOH-mediated killing of S. aureus by H2O2,
human monocytes, and neutrophil-derived cytoplasts (142,
256). However, the role of zOH-mediated killing of S. aureus by
intact human neutrophils remains unresolved (70, 257). In
addition, killing of Leishmania donovani chagasi promastigotes
by H2O2 appears to involve iron-dependent

zOH formation
(329), but these studies have not yet been extended to phago-
cyte systems. The role of iron in microbe-phagocyte interac-
tions is clearly complicated, since Byrd and Horwitz have
shown that conditions that modulate phagocyte iron concen-
tration appear to affect intracellular microbicidal activity
against Legionella pneumophila and M. tuberculosis in opposite
ways (46, 47).
Recently, NOz has been increasingly recognized as another

phagocyte-derived oxidant involved in microbicidal activity. Its
synthesis requires a NOz synthase, of which there exist consti-
tutive and inducible isoforms (see above) (216). The inducible
enzyme has been definitively demonstrated in murine phago-
cytic cells and can be induced by a number of cytokines and
lipopolysaccharides (216, 295). Despite efforts by many inves-
tigators, however, the ability to detect NOz production by hu-
man mononuclear phagocytes has been modest at best under
conditions where NOz production by murine phagocytes is
readily apparent (49, 117, 159, 160, 223). Recent data have
demonstrated that human mononuclear phagocytes can pro-
duce constitutive NOz synthase (255, 312). The inducible NOz

synthase mRNA and protein are generated in response to
lipopolysaccharide and/or gamma interferon stimulation, dem-
onstrating that human phagocytes appear to possess the nec-
essary “machinery” to synthesize NOz. More direct evidence
for NOz production by human macrophages has been demon-
strated by the recent findings of Nicholson et al. (227). An
average of 65% of alveolar macrophages in bronchoalveolar
lavage specimens from 11 patients with untreated, culture-
positive pulmonary tuberculosis contained NOz synthase
mRNA and functional NOz synthase expression. Of note, only
10% of alveolar macrophages from normal subjects demon-
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strated similar findings. However, despite these reports, the
quantity of NOz generated under a number of conditions was
very small (312). In addition, studies where NOz production is
equated with nitrite production may falsely overestimate the
true quantity of NOz synthesis, as shown by Klebanoff and
Nathan, who demonstrated that human neutrophils can syn-
thesize nitrites via the catalase-catalyzed conversion of azide to
nitrite in the presence of phagocyte-generated H2O2 in vitro
(168).
The primary microbicidal effect of phagocyte-derived NOz

appears to involve intracellular pathogens. A clear role in
pyogenic bacterial infections has not been demonstrated. By
treating murine-activated macrophages in vitro with NG-mono-
methyl-L-arginine, a competitive inhibitor of nitrate and nitrite
synthesis from L-arginine, a number of investigators have im-
plicated NOz as having microbiostatic and/or microbicidal ac-
tivity against pathogens such as Cryptococcus neoformans
(117), Toxoplasma gondii (1), Mycobacterium bovis (100),
Leishmania major (180, 182), Schistosoma mansoni (160), and
others (223, 261). Further studies involving an in vivo model of
murine leishmaniasis have demonstrated that NOz plays an
important role in containing the extent of infection and de-
creasing the overall organism load (92, 181). A similar result
was observed by Boockvar et al. in an in vivo model of murine
listeriosis (28).
Although the importance of NOz production to murine mac-

rophage function is now well established, these data are not
directly applicable to human phagocytes, because the existence
of a role for NOz in human phagocyte microbicidal activity is
less clear. Recent data by Vouldoukis et al. suggest that the
killing of L. major by human macrophages is mediated by NOz,
whose production is induced after cell activation via ligation of
the low-affinity receptor for immunoglobulin E (FcERII/CD23
surface antigen) (307). This receptor is upregulated in cutane-
ous leishmaniasis. Additional in vitro data imply that tumor
necrosis factor alpha (TNF-a) and granulocyte-macrophage
colony-stimulating factor stimulate human macrophages to re-
strict the growth of virulent Mycobacterium avium by a mech-
anism involving NOz (80). The previously discussed findings by
Nicholson et al. (227) also suggest that NOz may be an impor-
tant component of host defense against pulmonary tuberculo-
sis. Likewise, Bukrinsky et al. reported that lipopolysaccharide
or TNF-a-activated HIV-infected monocytes exhibit enhanced
NOz production (44). In support of these findings, the authors
detected RNA encoding the inducible NOz synthase in post-
mortem brain tissue from an AIDS patient with advanced HIV
encephalitis. Nitric oxide may also contribute to the killing of
staphylococci by neutrophil cytoplasts (anucleate, granule-
poor, motile cells) which rapidly took up and killed the bacte-
ria by a mechanism inhibited by NG-monomethyl-L-arginine
(194). In contrast to these various studies, a direct comparative
study between murine and human macrophages revealed that
activated murine but not human macrophages demonstrated
enhanced NOz production and antimicrobial activity against
Toxoplasma gondii, Chlamydia psittaci, and Leishmania dono-
vani (223). Although not directly compared with murine mac-
rophages, NOz production contributes minimally to human
macrophage-mediated killing of Cryptococcus neoformans and
Schistosoma mansoni (49, 158), organisms which are killed by
a NOz-mediated mechanism in murine macrophages (117,
160). This suggests that NOz makes a minimal contribution to
the overall microbicidal activity against these pathogens in the
human host.
Thus, there are increasing data supporting the concept that

human phagocytes can produce NOz, albeit in small quantities
relative to their murine counterparts. However, these data are

somewhat difficult to interpret, as the frequency with which
negative findings are reported by laboratories is often quite
low. This capability to synthesize NOz appears to be mediated
via the classic NOS pathway. The microbicidal activity of hu-
man, like murine, phagocyte-derived NOz, if and when it is
generated, could contribute to host protection against intra-
cellular organisms. However, the contribution of NOz relative
to the other phagocyte antimicrobial mechanisms known to be
effective against these and other pathogens has yet to be es-
tablished.
Other oxidant sources and their contribution to microbici-

dal activity. Although phagocytes are the primary source of
microorganism exposure to oxidants in mammalian hosts,
other mechanisms of oxidant production exist and probably
contribute to microbial oxidant stress. As discussed in a previ-
ous section, microorganisms such as Nocardia and Lactobacil-
lus spp. produce NOz and H2O2, respectively, which may in
turn have toxic effects on other microorganisms in close prox-
imity (64, 89, 167, 332). In addition, endothelial cells produce
NOz, zO2

2, and H2O2 in response to a number of stimuli,
including inflammation (216). Feng et al. have recently sug-
gested that endothelial cell-derived NOz could protect these
cells from infection with Rickettsia conorii (96). In an experi-
mental model, pulmonary (tracheal and alveolar) epithelial
cells also demonstrate luminal H2O2 production, which is en-
hanced after stimulation by phorbol myristate acetate and
platelet-activating factor (165). Epithelial cells from cystic fi-
brosis patients have been shown to consume two- to threefold
more oxygen than do normal cells, providing indirect evidence
of a highly oxidative environment in a population known to
have a chronically high organism load (296). These endothelial
cell- or epithelial cell-derived compounds may exert microbial
oxidant stress either alone or via their reaction by-products
such as ONOO2 and/or zOH in the extracellular space. Addi-
tionally, these oxidants may interact with phagocyte-derived
oxidants, cytokines, and other compounds to potentiate the
microbial insult.
Several antimicrobial agents used in the treatment of clinical

infections, in addition to blocking key enzymes and other met-
abolic functions of microorganisms, produce reactive oxygen
intermediates that are capable of damaging other biomol-
ecules. For example, b-lactam antibiotics (penicillins and ceph-
alosporins) have been shown to oxidatively damage DNA and
deoxyribose in the presence of iron and copper salts, consistent
with an zOH-mediated mechanism (246). In addition, the poly-
unsaturated structure of the polyene antifungal antibiotics
(amphotericin, natamycin, and nystatin) gives them the pro-
pensity to oxidize to form peroxy radicals and thiobarbituric
acid-reactive aldehyde fragments (281). These interactions can
then lead to the generation of other oxygen-centered radicals
capable of inciting further microbial injury. These newly rec-
ognized antibiotic effects may prove to be an important com-
ponent of their biologic activities.
Likewise, a number of compounds undergo rapid redox cy-

cling under aerobic conditions, potentially resulting in an ad-
ditional source of extracellular oxidants for microbial encoun-
ter (135, 191). These compounds are univalently reduced to
free radicals by cellular systems. In the presence of O2, these
reduced molecules are then reoxidized, with the resulting
transfer of that electron to O2, hence forming

zO2
2 and H2O2,

the latter via zO2
2 dismutation. Examples of such compounds

include pharmacologic agents such as adriamycin, bleomycin,
and nitrofurantoin (191).
The P. aeruginosa secretory product pyocyanin works by a

similar mechanism. This compound is a phenazine-derived pig-
ment that can undergo redox cycling to induce both intra- and
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extracellular zO2
2 and H2O2 production from O2 in both eu-

karyotic and prokaryotic cells (134, 135, 218). This process
contributes to cell death through the diversion of electron flow
from normal biologic pathways into those leading to toxic
oxidant generation. This pyocyanin-induced production of
zO2

2 and H2O2 also can lead to the formation of
zOH in the

presence of a catalytic iron source (38, 208). Pyocyanin pro-
duction increases under conditions of nutritional deprivation
and oxidative stress (136). Interestingly, however, P. aeruginosa
itself is relatively insensitive to pyocyanin and seemingly es-
capes oxidant-mediated injury during production of or expo-
sure to this compound (136). This may be explained in part by
its low endogenous levels of NADH/NADPH, its lack of
NADPH:pyocyanin oxidoreductase, and/or its high levels of
SOD and catalase.
In addition to its redox capabilities, pyocyanin has numerous

in vivo and in vitro effects which could play a role in the
pathogenesis of clinical infections. For example, the addition
of pyocyanin, at concentrations detectable in pulmonary secre-
tions of individuals with P. aeruginosa infection, to human
ciliated nasal epithelial cells (4, 317, 318) and sheep tracheal
epithelial cells (157) results in a loss of ciliary function as well
as a decrease in in vivo tracheal mucus velocity in the sheep
model (222). The effect on sheep cilia could be negated by the
simultaneous presence of catalase, suggesting an oxidant-me-
diated mechanism (222). This process may contribute to the
difficulty that cystic fibrosis patients experience in mobilizing
their secretions (222). Other effects of pyocyanin potentially
relevant to microbial killing and inflammatory tissue injury
include those on stimulated neutrophils to alter zO2

2 produc-
tion and degranulation, host cell NOz production, and lympho-
cyte proliferation and differentiation (207, 219, 220, 230, 282,
305, 310).

MECHANISMS OF MICROBIAL DEFENSE
AGAINST OXIDANTS

Avoidance of Encounters with Phagocyte-Derived Oxidants

As microbial killing by phagocytes is a multistep process,
microorganisms have likewise developed a sequential series of
defense strategies to counteract this process. Some microor-
ganisms secrete toxins to kill the phagocyte before they can be
killed by it. Examples include the production of streptolysin by
Streptococcus spp. (22), leukocidin by Staphylococcus aureus
(263), and the Clostridium septicum toxin (193). Other organ-
isms resist phagocytic uptake by covering their surfaces with
hydrophobic capsules (Neisseria meningitidis, pneumococci)
(103, 141, 147, 158, 258–260, 324). Pathogenic mucoid strains
of P. aeruginosa synthesize alginate, an exopolysaccharide. In
addition to aiding in avoiding phagocytic uptake, alginate has
the ability to scavenge reactive oxygen intermediates, suppress
leukocyte function, and promote bacterial adhesion (11, 82, 87,
177, 239, 280). This may be of particular clinical relevance, as
airway isolates from individuals with cystic fibrosis commonly
demonstrate alginate production (82, 239). P. aeruginosa also
requires a unique glucose-dependent pathway for phagocytosis
by macrophages (13). This may enhance its pathogenicity in
the bronchoalveolar space, where concentrations of glucose
and other carbohydrate are low. Acidification within the
phagocytic vacuole is an important process to maximize the
spontaneous dismutation of zO2

2, hydrolase activity, and pha-
gosome-lysosome fusions. Inhibition of this acidification pro-
cess has been described for Legionella pneumophila (146) and
Toxoplasma gondii (279). Although phagocyte-derived oxidants
are important mediators in microbial killing, some organisms

can survive the encounter to then inhibit phagosome-lysosome
fusion and avoid enzymatic attack by hydrolytic enzymes. This
process is poorly understood but has been demonstrated
among some mycobacteria (143), T. gondii (143), Chlamydia
spp. (143), and others (41, 146). Other organisms, such as
Listeria monocytogenes (60), Shigella flexneri (274), and
Trypanosoma cruzi (5), are able to escape from the phagosome
by the secretion of membrane-damaging cytolysins.
Another key virulence factor allowing for the avoidance of

host defense mechanisms has been identified in a number of
Yersinia spp. In Yersinia enterocolitica, a 51-kDa periplasmic
protein encoded by the yop-51 gene shares amino acid se-
quence identity with the catalytic domain of several protein
tyrosine phosphatases (PTPases) (120). Activation of protein
tyrosine kinases is an important signaling mechanism in many
cells, including macrophages. By interfering with host signaling
pathways, Yersinia spp. have the potential to modify the host
immune response, which probably explains the importance of
this process as a virulence factor. The yop-51 gene resides on a
naturally occurring 70-kb plasmid, and its mutation alters the
virulence of the organism (26). An analogous gene, yopH,
encodes a similar PTPase in Y. pseudotuberculosis. Further
work has characterized the crystalline structure and active site
of these proteins (294, 331). The specific gene and correspond-
ing PTPase have not been determined for Y. pestis, but pre-
liminary studies reveal that the yop-51/yopH gene is highly
conserved in this organism (242).

Defense Strategies Specific for Oxidants

Nonenzymatic. Exposure to intraphagosomal oxidants is a
fatal event for many microorganisms. However, some organ-
isms have evolved an ability to inhibit the NADPH- oxidase-
dependent oxidative burst and thus to inhibit reactive oxidant
production within the phagosome (Fig. 2). This appears to be
particularly important for intracellular pathogens as it aids in
survival within the phagosome. For example, the lipophospho-
glycan present on the membrane of Leishmania major and L.
donovani (analogous to lipopolysaccharide in bacteria) inhibits
protein kinase C activity in macrophages (30, 104), resulting in
suppression of the respiratory burst and ultimately of zO2

2

production. This inhibition of macrophage protein kinase C
activity also impedes macrophage chemotactic locomotion and
interleukin-1 (IL-1) production. Legionella pneumophila se-

FIG. 2. Overview of bacterial defense mechanisms against oxidative killing
inside the phagosome.
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cretes a compound shown to inhibit the neutrophil oxidative
burst (272). Leishmania donovani (114) and Legionella micda-
dei (271) produce extracellular acidic phosphatases that block
zO2

2 formation in vitro. The mechanisms of these effects have
not been further elucidated, however.
Antioxidant scavengers unique to specific pathogens have

also evolved to protect microorganisms from phagocyte-de-
rived oxidants. As noted above, P. aeruginosa produces alg-
inate, an exopolysaccharide capable of scavenging oxidants
(177, 280). In addition, the phenolic glycolipid of mycobacteria
and the lipophosphoglycan of L. donovani are effective in scav-
enging zOH and zO2

2; these characteristics may enhance the
intracellular survival of the organisms (61, 226). Cryptococcus
neoformans is known to produce large amounts of mannitol
both in vivo and in vitro (323). Mannitol in high concentrations
has the ability to scavenge reactive oxygen species. Thus, its
production by C. neoformans may be a protective mechanism
by which the organism protects itself from oxidative killing by
host phagocytes. Chaturvedi et al. have recently demonstrated,
by using a low-mannitol-producing mutant of C. neoformans,
that the ability of C. neoformans to produce and accumulate
mannitol may influence its tolerance to heat and osmotic
stresses and its pathogenicity in mice (62) through the scav-
enging of reactive oxygen intermediates (63).
The formation of heat shock proteins (HSP) by ingested

bacteria may represent another adaptive mechanism. HSP pro-
duction can be induced by increased temperature and/or oxi-
dant exposure as a means of protection against both heat and
oxidant damage. In Mycobacterium tuberculosis and Mycobac-
terium leprae, a strongly immunogenic antigen can be recog-
nized by use of monoclonal antibodies (327). Production of this
protein can be induced by stress, which may include phagocy-
tosis. Severe stresses also increase the production of antioxi-
dant enzymes such as SOD. There exists some evidence that
HSP may also play a role in the regulation of antioxidant
enzyme production in E. coli (293); this is discussed in more
detail below.
Little is known about microbial defense against NOz. During

the process of denitrification, microorganisms appear to limit
toxicity by keeping endogenous NOz levels very low (334). In an
in vitro model, extracellularly generated NOz was inactivated
by the P. aeruginosa-derived phenazine pigment pyocyanin
(310). Once phagocytized, microorganisms may have evolved a
strategy to inhibit host nitric oxide synthase analogous to what
has evolved for the NADPH-oxidase complex. However, at
present, this has not been reported.
Enzymatic. Microorganisms have developed highly specific

and effective enzymatic pathways of oxidant inactivation, in-
cluding those catalyzed by SOD, catalase/peroxidase, and glu-
tathione (GSH) in combination with glutathione peroxidase
and glutathione reductase (122, 137). (See Fig. 2 and Table 1
for chemical reactions.)
Glutathione serves as a substrate for the H2O2-removing

enzyme glutathione peroxidase. It can then be redox cycled via
glutathione reductase for further H2O2 removal. GSH is also
an zOH scavenger. Eukaryotic cells depleted of GSH exhibit
increased susceptibility to oxidant-mediated killing (205).
There are also data suggesting that GSH depletion is involved
in HIV replication (162, 286). The importance of this antiox-
idant system in prokaryotes, however, has not been clearly
established. GSH reductase-negative E. coli mutants do not
demonstrate an increased susceptibility to H2O2-mediated
stress compared with the isogenic parental strain (118). How-
ever, there are data suggesting that GSH may facilitate the
deactivation of E. coli aconitase and other [4Fe-4S]-containing
dehydratases that have been oxidatively inactivated by zO2

2

(111). Proteins immunologically related to GSH have been
demonstrated in other bacterial species and in other strains of
E. coli (240). Recently, Moore and Sparling have identified a
GSH peroxidase homolog gene, gpxA, in Neisseria meningitidis.
The amino acid sequence of this gene is highly homologous to
GSH peroxidases found in other bacterial species (217). Thus,
there may be several types of GSH-metabolizing proteins in
bacteria which serve a similar purpose, and their distribution
may even vary within a single species. Protozoa such as try-
panosomes and leishmaniae produce trypanothione (93). It
may have an analogous function to GSH in that it functions to
maintain thiol redox within the organism and as a defense
mechanism against oxidants, xenobiotics, and heavy metals.
The importance of trypanothione to parasite survival can be
exemplified by organism exposure to D,L-a-difluoro-
methylornithine, an antiparasitic agent used in the treatment
of human African trypanosomiasis. D,L-a-Difluoromethyl-
ornithine inhibits parasite ornithine decarboxylase, which re-
sults in decreased cellular trypanothione levels among other
effects (93). Why these organisms have evolved to produce
trypanothione in addition to GSH is unclear.
Considerably more data are available on the distribution,

structure, and regulation of microbial catalases and peroxi-
dases (186). The antioxidant action of these enzymes is to
catalytically convert H2O2 to H2O and O2. Nearly all aerobic
and facultatively anaerobic microorganisms, with the exception
of the Streptococcus spp., synthesize at least one form of cata-
lase and/or peroxidase (201). The majority of obligate anaer-
obes lack this capability (201). These proteins are character-
ized by structural diversity between different organisms and
even within the same organism. The most common form con-
sists of a homotetramer with one protoheme IX per subunit.
Most bacteria produce two catalases, whereas others such as
Klebsiella pneumoniae and P. aeruginosa have the ability to
produce multiple catalases under specific growth conditions
(115, 136).
The two structurally distinct catalases of E. coli, termed

hydroperoxidase I (HPI) and hydroperoxidase II (HPII), have
been the most extensively studied (65, 66). HPI, a bifunctional
catalase-peroxidase encoded by katG, contains two protoheme
IX groups associated with a tetramer of identical 80-kDa sub-
units and is localized in the periplasmic space. HPII, a mono-
functional catalase encoded by katE, consists of six heme d
isomers associated with a hexameric structure of 84.2-kDa
subunits and is found solely in the cytoplasm. The relative
levels of HPI and HPII are controlled by two different regulons
that respond to different environmental stimuli (186). HPI is
synthesized preferentially in response to oxidative stress
(H2O2), whereas HPII is produced in response to nutrient
depletion as occurs in the stationary growth phase (188). Thus,
not only are HPI and HPII different structurally and geneti-
cally, but also the processes controlling their synthesis respond
to different stimuli and involve different mechanisms. The two
catalases of Bacillus subtilis have been studied in comparison
and appear to show some resemblance to E. coliHPI and HPII
with regard to their structure and mechanism of control (185,
187). Among other bacterial species, the catalases of several
other members of the Enterobacteriaceae family exhibit homol-
ogy to E. coli HPI and HPII (298).
The complexity of bacterial catalase expression and regula-

tion can be demonstrated by the reported correlation between
the loss of catalase production and isoniazid resistance among
Mycobacterium tuberculosis isolates (98, 330). Different
amounts of catalase production have been found in a number
of organisms in response to nutrient depletion and in associa-
tion with their susceptibility to phagocyte killing (136, 188,
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197). For example, the growth of P. aeruginosa in limited-
succinate media resulted in increased catalase activity and the
appearance of additional catalase isoforms compared to the
catalase activity in the same organisms grown under nutrition-
ally replete conditions (136, 210). Mandell demonstrated that
neutrophils easily killed low- but not high-catalase-producing
Staphylococcus aureus strains (197). This difference correlated
with in vivo lethality in a mouse model. Likewise, catalase-
deficient E. coli mutants exhibit an increased susceptibility to
phagocyte-mediated killing (121).
Another mechanism of oxidant inactivation used by micro-

organisms involves SOD. The production of this group of en-
zymes is a key defense strategy aimed at the elimination of
zO2

2. Not only does this decrease the possibility of direct
zO2

2-mediated toxicity, but also it prevents zO2
2-mediated re-

duction of iron and subsequent zOH generation via the Haber-
Weiss reaction. There are three common forms of SOD found
in nature (12). Eukaryotes and some higher fungi predomi-
nantly produce CuZnSODs, homodimers (molecular weight
32,000) with two noncovalently linked identical subunits con-
taining one atom each of copper and zinc. A few species of
bacteria have also been found to contain CuZnSOD; some of
these include Stenotrophomonas (Pseudomonas) maltophila
(289), Brucella abortus (18), several Haemophilus spp. (171,
172, 176), E. coli (21), N. meningitidis (173), L. pneumophila
(291), and Salmonella spp. (52). All bacteria, including obligate
anaerobes, produce either FeSOD, MnSOD, or both. Like
CuZnSOD, these enzymes exist as subunits (molecular weight
23,000) linked as dimers in FeSOD and dimers and tetramers
in MnSOD. The metal content of both isozymes varies be-
tween 1 and 2 atoms per dimer. Most SODs are cytoplasmically
located, although a few are located on or secreted through the
cytoplasmic membrane (16, 21, 270). In general, FeSOD pre-
dominates in anaerobic organisms whereas MnSOD is more
commonly found among aerobic organisms. Although varia-
tions in the FeSOD content have been observed in bacteria
producing both isoenzymes, it is the control of MnSOD that is
usually responsible for modulating the total level of SOD in
bacteria.
Like catalase, microbial SOD regulation and genetics have

been most extensively studied in E. coli (302), where SOD
expression is dependent on a number of environmental stimuli.
FeSOD, encoded by the sodB gene, is produced constitutively
in E. coli grown aerobically or anaerobically but is upregulated
when grown anaerobically in the presence of nitrate. MnSOD
becomes the predominant form when the cell is exposed to
oxidative stress. In addition, a hybrid form containing Fe and
Mn has also been isolated in vitro (85). It appears that, func-
tionally, FeSOD provides E. coli with the first line of defense
against zO2

2 and MnSOD is subsequently recruited in circum-
stances of increased oxidative stress. MnSOD gene (sodA)
expression is governed by a number of regulon proteins, such
as the Fur proteins and those under the control of the sox gene
locus, including the Arc protein (119, 228, 304). These proteins
are made in response to such stimuli as iron availability and
oxygen/oxidant exposure, respectively. Interestingly, the Arc
regulatory protein is also involved in the control of aconitase
synthesis, suggesting that increased MnSOD is necessary to
protect increased cellular concentrations of aconitase (109).
Evidence suggests that MnSOD regulation also occurs at the
posttranscriptional and posttranslational levels (244).
In recent work, Hassett et al. have begun to characterize a

similar system in P. aeruginosa, which, like E. coli, possesses
both an iron- and manganese-cofactored SOD (136, 138). No-
tably, P. aeruginosa has approximately four to five times the
SOD activity reported for E. coli (136). When cloned, the

genes encoding the MnSOD (sodA) and FeSOD (sodB) re-
vealed a 50 and 67% sequence homology with the respective E.
coli SODs. The relative quantities of the FeSOD or MnSOD
isoenzyme produced appear, as in E. coli, to be dependent on
nutritional availability and the degree of oxidative stress (136).
Some pathogens have evolved the ability to localize SOD

activity to their extracellular environment as a means of resist-
ing oxidant attack. For example, Mycobacterium tuberculosis
secretes an FeSOD, whereas Legionella pneumophila and E.
coli possess a periplasmic CuZnSOD (21, 270). Nocardia as-
teroides has a unique SOD associated with the outer cell wall,
which can be selectively secreted extracellularly. This SOD
differs significantly from those isolated from other bacteria in
that it contains equimolar amounts of Fe, Mn, and Zn (16).
Although N. asteroides induces an oxidative burst in human
phagocytes, it is not readily killed by this mechanism. Subse-
quent in vitro and in vivo studies have demonstrated that this
resistance to phagocyte-mediated killing is dependent on the
production and secretion of SOD by the organism (15, 17).
Initial killing and/or enhanced clearance of N. asteroides was
observed in organs obtained from infected mice given a mono-
clonal anti-SOD antibody-treated N. asteroides. This effect was
not observed in mice given a nonspecific nocardial antibody.
Thus, the extracellular localization of bacterial SOD may be an
important determinant in the pathogenesis of infection for N.
asteroides and other pathogens.
The importance of microbial SOD production can be appre-

ciated when studying SOD-deficient organisms. MnSOD- and
FeSOD-negative mutants have been obtained from E. coli
(303). However, with the recent discovery of the periplasmic E.
coli CuZnSOD (21), studies with these mutants warrant qual-
ification. Nonetheless, these organisms exhibit extreme sensi-
tivity to oxidizing agents such as paraquat and methylene blue
and are more susceptible to phagocyte-mediated killing (53,
121). Fe- and Mn-SOD-deficient double mutants demonstrate
a marked increase in oxygen-dependent mutagenesis (94).
Amino acid biosynthesis and membrane integrity also appear
to be affected (151, 152). However, in vitro data obtained with
E. coli suggest that overexpression of SOD may also be dele-
terious by accelerating H2O2 production in the organism upon
its exposure to oxidative stress (276).

ROLE OF OXIDANTS IN VIRAL INFECTIONS

There is recent evidence that oxidants, whether derived from
phagocytes or other sources, play a role in the pathogenesis of
viral infections. The majority of work has centered around
HIV. HIV infection is associated with a proinflammatory state
in the host, resulting in high levels of circulating cytokines,
including TNF-a, IL-1a, IL-1b, IL-2, IL-6, alpha interferon
(IFN-a), and IFN-g (262). Although it has been shown that
some of these cytokines can activate HIV replication in the
infected host cell directly (241), cytokine activation of phago-
cytes and other cells can also stimulate oxidant production.
Oxidants also have direct effects on HIV replication. Legrand-
Poels et al. demonstrated that the addition of exogenous H2O2
to a latently HIV-infected T-cell line (U1) resulted in in-
creased replication of the HIV-1 provirus (178). Schreck et al.
confirmed these findings in Jurkat T cells and provided further
insight into the mechanism of activation (275). This process,
like direct cytokine activation of HIV, is mediated by the in-
duction of NF-kB, a ubiquitous transcription factor that is
recognized by the HIV promoter (275). Likewise, Sandstrom
et al. showed that HIV gene expression enhanced T-cell sus-
ceptibility to H2O2-induced apoptosis (273).
HIV-infected cells may be uniquely sensitive to oxidant
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stress, as a number of studies have shown them to exhibit low
levels of GSH, the main intracellular defense against oxidants.
HIV-infected patients demonstrate decreased GSH levels in
blood and peripheral blood mononuclear cells relative to those
in normal patients, and this decrease becomes more pro-
nounced with advanced disease (81). More specifically, Staal et
al. found that in patients with symptomatic AIDS, GSH con-
centrations in CD8 and CD4 T cells are 62 and 63%, respec-
tively, of those found in seronegative controls (286). The great-
est decreases in GSH levels were seen in those patients with
advanced infection. Not only does this decrease in intracellular
GSH levels leave the infected cell susceptible to the direct
effects of oxidants, but also it leads to increased NF-kB expres-
sion, resulting in further activation of HIV replication (285).
Using a HeLa cell line transfected with the tat gene from
HIV-1, Flores et al. found that the expression of the regulatory
Tat protein, essential for virus replication, suppresses the ex-
pression of cellular MnSOD (102). These cells also exhibited
other evidence of increased oxidative stress manifested by el-
evated levels of carbonyl proteins and decreased cellular sulf-
hydryl content (102). Thus, HIV-mediated modification of host
antioxidant enzymes may be an important component in me-
diating ongoing HIV infection and the ultimate progression to
severe immunodeficiency. This process may be further altered
in the presence of opportunistic pathogens.
These advances in the understanding of the pathogenesis of

HIV infection have prompted investigations into the use of
antioxidants as therapy for HIV-infected individuals. In vitro
studies with an HIV-infected human promonocytic cell line
have demonstrated that HIV expression can be decreased by
treatment of the cells with GSH, glutathione ester, or N-ace-
tylcysteine (162, 195). Each of these compounds increases in-
tracellular thiol concentrations and, as a result, inhibits NF-kB
and ultimately HIV expression. These observations have led to
studies of HIV-infected patients to determine whether the
administration of N-acetylcysteine or L-2-oxothiazolidine-4-
carboxylic acid (Procysteine) may alter disease progression (81,
161). Although both of these compounds were found to in-
crease intracellular GSH levels in treated patients, there were
no significant differences in CD4 cell counts, viral load, or
proviral DNA frequency. Additional in vitro data suggest that
the oxidant scavenger ascorbate also suppresses HIV replica-
tion in chronically and acutely infected T cells (129). This
interaction appears to be synergistic when cells are exposed to
ascorbate and N-acetylcysteine concurrently (128). In vivo
studies with this combination have not been reported to date.
Although oxidants may play a role in the pathogenesis of HIV
infection, applying these findings for the development of po-
tential therapeutic strategies in HIV-infected patients has been
of limited benefit thus far.
Oxidants may also be involved in the pathogenesis of other

viral infections. As in HIV-infected cells, H2O2 effectively in-
duces synthesis of viral antigens in several lymphoid cell lines
that harbor the Epstein-Barr virus genome (234). In contrast,
H2O2 markedly decreases the release of progeny hepatitis B
virus (HBV) particles in cultured hepatoma cells without caus-
ing any significant difference in the overall pattern of host
protein synthesis (333). These findings may be important in the
pathophysiology of chronic HBV infection. In one circum-
stance, turning off viral gene expression may be a way for the
host to eradicate HBV infection. However, this mechanism
may allow the virus to evade complete destruction by shutting
off viral expression in infected hepatocytes adjacent to an area
of active inflammation. This would allow a few cells to escape
antigen-specific killing and resume viral replication once the
inflammation subsides. Levels of vitamin E in plasma are no-

tably low in patients with chronic liver disease (306). It is
widely established that vitamin E is an important cell mem-
brane antioxidant which acts as a free radical scavenger. One
might speculate that its deficiency in this setting may further
perpetuate tissue damage caused by oxidant release from in-
jured hepatocytes in patients with chronic viral hepatitis and
ultimately with cirrhosis. However, there have been no con-
trolled clinical trials assessing the therapeutic role of vitamin E
in these patients.
Human papillomavirus infection has been linked to an in-

creased risk of acquiring human cervical carcinoma, and a
recent study by Fernandez et al. suggests a potential oxidant-
dependent mechanism which could be involved (97). They
demonstrate that approximately 50% of healthy women pos-
sess polyamine oxidase and/or diamine oxidase in their cervical
mucus. These enzymes were shown to act on spermine and
spermidine (polyamines present in seminal fluid) to generate
H2O2 and reactive aldehydes, which are likely to exert local
mutagenic effects in vivo. These transformed cervical cells may
exhibit prolonged survival in the presence of HPV infection
through HPV suppression of apoptosis in the keratinocytes.
Thus, the authors suggest that the effects of HPV infection of
cervical cells may be synergistic with the effects of polyamine
oxidation occurring in the cervical environment of sexually
active women. The regulation of HPV replication may also be
modified by oxidants, as the intracellular redox environment
has been shown to affect the posttranslational DNA-binding
activity of three E2 proteins (199).
Virus-host cell interactions in relation to oxidant production

also appear to be important in the pathogenesis of influenza A
virus infection. Although neutrophils predominate in the early
inflammatory response to influenza A virus (106), the ability of
this virus to adversely affect neutrophil and monocyte function
in infected patients is well established (133) and may contrib-
ute to secondary bacterial infections. The influenza A virus
hemagglutinin molecule appears to be an important mediator
in this process of abnormal leukocyte function (56, 131). Al-
though exposure to the virus leads to neutrophil activation and
generation of a respiratory burst, the neutrophil response is
atypical with regard to calcium fluxes, phospholipase C activa-
tion, and release of H2O2 but not

zO2
2 (130, 132). Daigneault

et al. have further characterized this unique virus-phagocyte
interplay, specifically through studies of the hemagglutinin-
neutrophil receptor interaction (78). Clearly, further under-
standing of the role of oxidants in viral replication and virus-
host cell interactions for these and other viruses could
potentially lead to new therapeutic interventions.

UNTOWARD CONSEQUENCES OF OXIDANT
PRODUCTION FOR THE HOST

At sites of infection, host-derived oxidants not only place the
offending organisms under oxidative stress but also cause stress
to neighboring host tissues. As discussed above, these oxidants
are derived primarily from phagocytes; however, they can be
produced by other cell types inherently or via induction by
redox-active agents. Tissue injury at sites of infection may be
the result of the host inflammatory response to the pathogen
rather than cytotoxic components of the microorganism. The
role of oxidants in such processes will briefly be reviewed, given
their intimate relationship with the pathophysiology of many
infectious diseases. Readers are referred to the myriad of ex-
cellent recent reviews on oxidant-mediated tissue injury (76,
124–126, 209, 216, 309).
Many aspects of acute and chronic inflammatory tissue in-

jury appear to be mediated by oxidants released by neutrophils
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and other phagocytes (216, 313). This process is enhanced by
adherence of the phagocyte to the target cell surface (309).
This adherence and subsequent movement of phagocytes from
the blood to sites of inflammation require a complex signaling
system involving a family of glycoproteins termed selectins.
Selectins are synthesized by endothelial cells and stored in
their secretory granules. When endothelial cells are activated
by compounds such as thrombin or histamine (released in
response to inflammation), the granules fuse with the outer
membrane to expose the selectins on the cell surface. Phago-
cytes recognize these proteins, and this promotes their adher-
ence to the endothelium and primes them for degranulation
(190, 203). Following leukocyte activation, phagocyte-derived
proteins termed integrins bind to their respective receptors on
the endothelial cell. This interaction further strengthens adhe-
sion and directs the migration of the phagocyte beneath the
endothelium. Thus, this process targets phagocytes to areas of
inflammation, where, through the further recruitment of
phagocytes, oxidant-mediated tissue injury may result. Phago-
cyte-derived H2O2 can also indirectly lead to inflammatory
tissue injury by upregulating selectin expression on endothelial
cells and promoting further neutrophil localization (238).
Inflammatory tissue injury may also result via oxidant-in-

duced cellular production of proinflammatory cytokines (72,
164, 206). Likewise, the production of these cytokines may
potentiate further cellular oxidant release. Many of these in-
teractions are mediated through the transcription-regulating
factor, NF-kB (266). For example, in a rat model of neutro-
philic alveolitis, endotoxin-induced NF-kB activation is
thought to mediate the production of cytokine-induced neu-
trophil chemoattractant (analogous to human IL-8) by alveolar
macrophages (25). This process is believed to be important for
the recruitment of neutrophils and ultimately for the inflam-
matory tissue injury seen in this model. Oxidants can also
activate NF-kB, promoting the production and release of cy-
tokines such as IL-1 and TNF-a (8). Joint inflammation can
also be induced by bacterial products, immune complexes, and
crystals which recruit and activate phagocytes to form reactive
oxygen species (125, 126) primarily. This process can result in
tissue destruction via oxidant interactions with host proteogly-
cans, collagen, and elastin (124).
Injury to pulmonary epithelial and pulmonary vascular en-

dothelial cells can also occur as a consequence of microbial
infection in the case of acute necrotizing pneumonia and
chronic lung infection seen in cystic fibrosis patients (278, 309).
A similar injury pattern can be observed with infection-related
pulmonary complications such as acute respiratory distress syn-
drome and hyperoxic lung injury. The principal mechanism by
which this lung injury occurs remains to be determined, but it
appears to involve alterations in a number of parameters of
epithelial and endothelial cell function inducible by phagocyte-
derived zO2

2 and/or H2O2 (278). Iron-dependent formation of
zOH appears to be involved in the ability of phagocytes to
damage endothelial cells in vitro, with the endothelial cells
serving as the source of catalytic iron (107, 175). Peroxynitrite
also has been shown to inhibit pulmonary epithelial cell ion
channels, suggesting that this species could contribute to dif-
fusion barrier disruption under conditions in which both zO2

2

and NOz are present concurrently (14).
MPO-derived oxidants released in response to a microbial

stimulus may also contribute to inflammatory tissue injury di-
rectly via their toxic effects (148) and indirectly by their ability
to inactivate serine protease inhibitors such as a1-antitrypsin
(54, 83). These antiproteases play a critical role in limiting the
activity of proteases such as human neutrophil elastase re-
leased at local sites of inflammation (202). Thus, protease

inhibitor inactivation by MPO-derived oxidants may lead to
emphysematous changes analogous to those seen in individuals
congenitally deficient in a1-antitrypsin. Such processes have
been hypothesized to contribute to lung injury associated with
chronic bronchitis and other forms of chronic obstructive pul-
monary disease (198, 233, 315). Others have suggested this
process may also be involved in the lung disease observed in
cystic fibrosis patients (214, 297).
Data supporting a role for NOz and its derivatives in medi-

ating inflammatory tissue injury in humans have been limited
mainly to studies of autoimmune diseases (95, 216, 288). Evi-
dence supporting NOz production at sites of infection is lack-
ing, however, as there are no definitive data demonstrating its
formation by human phagocytes in vivo. In fact, recent litera-
ture suggests that NOz may also have antioxidant properties
(163, 288, 319). However, bacterially derived lipopolysaccha-
ride induces NOz production in endothelial cells. This process
may contribute to the vasodilation and hypotension observed
in septic shock (216).
Like microorganisms, host cells have evolved a complex sys-

tem to defend themselves against oxidant injury. As discussed
above, eukaryotic cells synthesize CuZnSOD as a means of
zO2

2 elimination. This enzyme is located in the cytosol and is
usually constitutively expressed (12). Synthesis of a manga-
nese-containing enzyme (MnSOD) can also be induced in the
mitochondrial matrix under conditions of increased oxidative
stress, specific cytokine stimulation, or heat shock (12). Since
the H2O2 formed by the dismutation of

zO2
2 is also cytotoxic,

eukaryotic cells have developed various mechanisms for its
removal analogous to those found in prokaryotic microorgan-
isms. This is accomplished by regulation of intracellular levels
of catalase, the two GSH-dependent enzymes, GSH, and/or
NADPH. Intra- and extracellular oxidant scavengers, such as
ascorbic acid, vitamin E, b-carotene, and a-tocopherol, also
probably play an important role in limiting cellular suscepti-
bility to oxidant-mediated injury (313). Preventing the forma-
tion of zO2

2 and H2O2 is the primary mechanism by which cells
can limit the formation of other potent oxidants such as zOH
and the MPO-derived oxidants. Hydroxyl radical generation
via the Haber-Weiss reaction can also be controlled by limiting
the availability of redox-active iron catalysts through the for-
mation of less active iron complexes such as extracellular lac-
toferrin and transferrin (7, 9, 42, 45, 320) and intracellular
ferritin (10, 59). Heme oxygenase mRNA expression in mam-
malian cells is also known to be increased following cell expo-
sure to oxidant stress. Although disputed by some investigators
(231), the proposed mechanisms of protection afforded by
heme oxygenase induction are twofold (6, 292). Heme oxygen-
ase decreases the availability of intracellular iron capable of
participating in the Haber-Weiss reaction by catalyzing the
conversion of free heme to bile pigments. These bile pigments
in turn exert antioxidant effects. Little is known about how host
cells protect themselves from injury by NOz. It is likely that
regulation of its production by the cell-specific NOz synthase
will prove important.
The extent of oxidant-mediated cytotoxicity observed at sites

of inflammation is dependent on the balance between host-
and microorganism-derived prooxidant and antioxidant forces.
When this balance is swayed in favor of the prooxidants, not
only microbial but also host cell cytotoxicity results, leading to
clinical manifestations such as the sepsis syndrome, acute re-
spiratory disease syndrome, lung destruction in diseases such
as cystic fibrosis and a1-antitrypsin deficiency, and joint de-
struction in inflammatory arthritides. Further understanding of
the mechanisms that regulate the prooxidant-antioxidant bal-
ance will probably have significant therapeutic implications in
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the management of these and other diseases characterized by
inflammatory tissue injury.

CONCLUSIONS

Defining the many roles of reactive oxygen species in host-
microbial interactions has proved complex. Although these
oxidants are consistent by-products of normal cellular metab-
olism, the concentration and potential biotoxicity can be mark-
edly enhanced under conditions of exogenous oxidative stress,
by exposure to pharmacologic agents, and, particularly, by
phagocytes as a means of host defense against invading micro-
organisms. These oxidants can have beneficial and detrimental
functions in both the host and the microorganism. Therefore,
both have evolved complex adaptive mechanisms for protec-
tion against these compounds, including enzymatic and non-
enzymatic oxidant-scavenging systems. These systems act as
virulence factors for the microorganism which enable it to
survive in a hostile environment. Despite the marked progress
in this field recently, there are still many unanswered questions
regarding the role of oxidants in microbial pathophysiology
that will probably prove to be a promising research area in the
future.
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